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a b s t r a c t

This study presents a novel kernel discriminant transformation (KDT) algorithm for face recognition

based on image sets. As each image set is represented by a kernel subspace, we formulate a KDT matrix

that maximizes the similarities of within-kernel subspaces, and simultaneously minimizes those

of between-kernel subspaces. Although the KDT matrix cannot be computed explicitly in a

high-dimensional feature space, we propose an iterative kernel discriminant transformation algorithm

to solve the matrix in an implicit way. Another perspective of similarity measure, namely canonical

difference, is also addressed for matching each pair of the kernel subspaces, and employed to simplify

the formulation. The proposed face recognition system is demonstrated to outperform existing

still-image-based as well as image set-based face recognition methods using the Yale Face database B,

Labeled Faces in the Wild and a self-compiled database.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic face recognition has been an essential requirement
in a wide range of computer vision applications, such as human–
computer interaction (HCI), content-based image retrieval
(CBIR) [1,2], security systems and access control systems [3–5].
However, automatic face recognition is a complex process since
the appearance of facial images contains an immense variety of
expressions, orientations, lighting conditions, occlusions and so
forth. Due to these dramatic variations of facial images, the
performance of conventional face recognition systems based on
a single testing image [3,6–9] is somewhat limited.

Many researchers have noticed the influence of appearance
variations for face recognition, and pursued many studies to
tackle this problem. Multiple classifiers [10] and active appear-
ance models (AAM) [11] address facial pose issues. A survey also
can be also found in [12]. Illumination compensation [13],
quotient image creation [14], and synthesized illuminated exem-
plars [15] are proposed to tackle the illumination problems. In
addition, multiscale facial structure [16] and local contrast
enhancement [17] is also explored to recognize faces under
varying illumination.

Notwithstanding the contributions of [10,11,13–15,18], a single
testing input provides insufficient information to guarantee a
reliable recognition performance. Better performance could be
obtained from sets of testing images since multiple images provide
more appearance variances of the input data. Recently, canonical
ll rights reserved.
correlation (or principal angles) as a similarity between two image
sets has drawn increasing attention. The idea of canonical correla-
tion is to measure the cosine angles between associated basis pairs
of linear subspaces that correspond to image sets. Canonical
correlation has been an effective representation in capturing image
set information [19–23]. However, for nonlinearly distributed pat-
terns, such as facial images with head motions and lighting varia-
tions (see Fig. 1 for example), these methods are somewhat limited
due to their assumption of linearity.

Since facial images are nonlinearly distributed, this study
develops a novel kernel discriminant transformation (KDT) algo-
rithm for image-set based face recognition. The proposed algo-
rithm is based on a canonical difference measure [24]. In spirit,
the proposed KDT algorithm bears some resemblances to the DCC
method [22] in that they both solve an optimal transformation
based on a discriminative criterion and the concept of canonical
correlations. However, our method has several significant differ-
ences in extending the DCC method to a nonlinear version, i.e., the
entire learning process is performed in a high-dimensional feature
space. Each input image set is represented as a kernel subspace,
instead of a linear subspace, by considering the nonlinearity of
KPCA [25].

Since the input here is different from DCC [21], our contribu-
tion can be clearly summarized into four-fold: (1) Due to the
nonlinearity of facial images, we propose to learn a KDT matrix
such that after the transformation, separation within kernel
subspaces of the same class are minimized, and at the same time
separation between kernel subspaces of different classes are
maximized. (2) Although the KDT matrix cannot be explicitly
computed in high-dimensional feature space, we develop the KDT
algorithm to derive implicit evaluation for the dot products in the
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Fig. 1. Typical examples of facial images containing unconstrained head motions with different lighting conditions (a) and facial expressions (b). (c) and (d) show

respective nonlinear distribution in the 3D eigenspace.
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feature space. (3) We discuss a geometric perspective of canonical
correlation, namely canonical difference, for measuring the simi-
larity between subspace pairs, and show that the correlation and
the difference are in inverse proportion of each other based on
simple geometric rules. (4) We provide analysis of computational
complexity, bounds, and significance testing for the proposed
algorithm.

The rest of this paper is organized as follows: next section
reviews previous work related to this paper. An overview of the
proposed approach is illustrated in Section 3. Section 4 presents
the training procedure, computational analysis and bounds of the
proposed KDT algorithm. The testing process is shown in Section
5. We show the experimental results in Section 6, and draw the
conclusion in Section 7.
2. Related work

Reviewing the literature, image set-based face recognition
approaches mainly fall into two categories: temporal-based and
non-temporal approaches. Temporal-based approaches [26–29]
recognize human faces by analyzing the connectivity among
temporal sequences in video. Non-temporal approaches
[20–22,30–36], on the other hand, require no assumption of
temporal coherence between facial images, and thus have an
advantage that the training database can be arbitrarily expanded
instead of being recollected. The proposed method belongs to the
later category, therefore we focus on the discussion on non-
temporal approaches.

Non-temporal approaches for image set-based face recognition
can be further separated into two types [22]: sample-based
(nonparametric) and model-based (parametric) methods. In
methods of the former type, such as [26], the recognition process
involves matching pairwise samples in two image sets, and thus
can be time-consuming and sensitive to noise/outliers. By con-
trast, model-based methods, such as [30,34], assume a prelimin-
ary statistical model for each facial image set, and thus requires a
strong statistical correlation between the training data and the
testing data to ensure satisfactory recognition. To identify that if
two facial image sets belong to the same person, the most
effective way would be measuring the similarity of the common
views of data, which is the idea of canonical correlations.

Yamaguchi et al. propose a set-based face recognition system
based on a mutual subspace method (MSM) [19], and yield an
improvement compared to image-based approaches that use only
one image for testing. Each image set is represented as a linear
subspace, and canonical correlations are exploited as the
similarity between two image sets. However, MSM does not
consider inter-subspace information and therefore limits its
discriminative power. Constrained mutual subspace method
(CMSM) [20], on the other hand, defines a constrained subspace
as differences between all training subspaces, and then measures
the canonical correlations in the constrained subspace. Kim
et al. [22] report that the performance of CMSM depends on an
appropriate dimensionality of the constraint subspace, and pro-
pose an alternative scheme to learn a discriminative canonical
correlation without specifying dimensionality of target subspace.
The recognition performance is shown more robust than both
conventional sample-based and model-based methods. Never-
theless, above methods are developed under the linear assump-
tion of input patterns.

Nonlinear extensions of face recognition systems have been
widely proposed in [25,37–42]. For these methods, a nonlinear
function is applied to map input patterns in the original space to a
high-dimensional feature space, where nonlinear input patterns
are shown to be more easily classified. The inner products of
images in the feature space can be implied by a kernel function in
the input space. Regarding the image-based methods, the kernel
property is employed in [36] to nonlinearly extend the MSM
method [19], denoted as kernel MSM (KMSM). As in the original
MSM method, the proposed approach ignores the discriminative
information between different classes, and thus restricts its
performance. Fukui et al. [31] address the nonlinear version of
CMSM in by deriving a representation for the kernel constrained
subspace, and justify their performance through an application of
3D object recognition. However, KCMSM inherits the same draw-
backs of a appropriate dimensionality for the constrained sub-
space. In a later study, Fukui and Yamaguchi [32] propose a kernel
orthogonal mutual subspace method (KOMSM), where the selec-
tion of dimensionality was resolved by orthogonalizing the kernel
subspaces before calculating their canonical correlations. Inspired
by the above effectiveness of kernel methods, this work proposes
a more reliable approach to tackle the problem of image-set based
face recognition.
3. Overview of the proposed image set-based face recognition
system

Fig. 2 shows the overview of training and testing processes in
the proposed image set-based face recognition system. The
training process commences by compiling n (typically n¼3)
image sets for each subject. Each image set comprises ni

20�20-pixel facial images characterized by arbitrary head
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motions and either lighting condition variations or facial expres-
sion variations. The total number of subjects is assumed to be N,
and thus the training database contains a total of m (¼N�n)
image sets.

Since the facial images in the image sets Xi (i¼1,y,m) produce
nonlinear manifolds in the original space (as shown in Fig. 1), we
perform KPCA on each Xi to represent the bases spanning the
corresponding kernel subspace Pi in the high-dimensional feature
space F . Then, the proposed kernel discriminant transformation
(KDT) algorithm is employed to obtain an optimal transformation
matrix T such that the transformed kernel subspace TT Pi

(i¼1,y,m) give maximal correlation between kernel subspaces
related the same subject and minimal correlation between those
related to different subjects. Note that what we explicitly com-
pute in the KDT algorithm is the transformed kernel subspaces
TT Pi instead of the KDT matrix T. A more detailed derivation is
shown in the following sections that T can be used for evaluating
the inner products of TT Pi in F . We then provide another
perspective of the similarity measure of two image sets by
considering the difference between associated canonical vec-
tors [22] of two subspace. To satisfy the orthonormal condition
of canonical vectors, a QR-decomposition operation is performed
on each transformed subspace TT Pi to produce a corresponding
reference subspace Refi for each image set Xi.

In the testing process, as shown in Fig. 2(b), a reference
subspace Reftest corresponding to the input image Xtest is obtained
using the same procedure as in the training process. The similar-
ity between reference subspaces Reftest and Refi in the training
database is evaluated in terms of the canonical differences
between them. The training reference subspace Refi yielding the
smallest canonical difference is then returned as the recognition
result.
4. Training process

In this section, we discuss the details of the proposed KDT
algorithm and the similarity measure of canonical difference in
the training process. The training process commences by utilizing
KPCA to represent a kernel subspace Pi for each image set Xi.
Then, we define a transformation matrix T in F , denoted as the

KDT matrix hereafter for convenience, based on Fisher’s linear
discriminant and the canonical difference as a similarity measure
between each pair of kernel subspaces. The idea of T is to
transform all kernel subspaces such that the transformed kernel
subspaces TT Pi (i¼1,y,m) give maximal correlation between
kernel subspaces related to the same subject and minimal
correlation between those related to different subjects. As T
cannot be computed explicitly in F , we reformulate Fisher’s
linear discriminant as kernel Fisher’s discriminant (KFD) to solve
the matrix a, which represents the coefficients of the bases of T.
The entire procedure of finding the optimal coefficient matrix a is
referred as the kernel discriminant transformation (KDT) algorithm.
By examining the proposed KDT algorithm, we offer the analysis
of the bounds of the number of bases for T and the complexity of
the KDT algorithm. Finally, a reference subspace of each kernel
subspace is calculated for computational convenience.

In the following discussion, the set of training data {X1,y,Xm}
is assumed to contain N subjects with n image sets per subject, i.e.
a total of m (¼N�n) image sets in the training database. Each
image set Xi ¼ ½x1, . . . ,xni

� contains ni 20�20-pixel facial images.
4.1. Kernel subspace creation using KPCA

As shown in Fig. 1, the facial images with different lighting
conditions or facial expressions are nonlinearly distributed in the
original space. Hence, their distribution cannot be well repre-
sented using a linear subspace method such as PCA. In this study,
we employ the kernel PCA (KPCA) method [25] to represent a
kernel subspace Pi for each training image set Xi. It was addressed
in [42] that the use of kernel subspaces is capable of extracting an
abundance of nonlinear features from facial or object images.
KPCA, therefore, provides a nonlinear solution for automatic face
recognition systems to identify facial images characterized by
wide variations in poses, facial expressions or illumination.



Non-linear ma pping

•
… …

(Xi)

i
1

i
s

i
ni

h

i
r

i
s

i
r

i
sk

xx

x,x

SVD on KiiKernel matrix

Kii
Xi

1

2

ni

…

1 2 ni

…

Xi

… …

i
1x i

sx
i
ni

x

Image
set X

i

Kernel subspace Pi =
corresponding 

i
d

ii eee ,, ..., 21

… …
Pi

ie1
i
pe i

de

h

� (  )

�

� �

{                }

=�T �

Fig. 3. Kernel subspace representation using KPCA. Rather than directly applying a nonlinear mapping function fð�Þ to each facial image xi
s of the image set Xi, the kernel

function kðxi
s ,xi

rÞ is used to generate the kernel matrix Kii for Xi. The corresponding kernel subspace Pi is then obtained as the span of the eigenvectors fei
pg

d
p ¼ 1.

W.-S. Chu et al. / Pattern Recognition 44 (2011) 1567–15801570
As shown in Fig. 3, each image set Xi (i¼1,y,m) in the original
input space is mapped into a high-dimensional feature space F
using the following nonlinear mapping function:

f : fXi, . . . ,Xmg-ffðXiÞ, . . . ,fðXmÞg, ð1Þ

where m is the number of training image sets. In practice, the
dimensionality of F , denoted as h, can be huge or possibly
infinite, and thus performing calculations in F is computationally
complex and expensive. Using the ‘‘kernel trick’’, the dot products
fT
ðxrÞfðxsÞ in F can be expressed in terms of a kernel function

kðxr ,xsÞ such that calculation in F can be easily performed in
terms of dot products instead of direct use of the mapped images
fðxÞ. The training process proposed in this study utilizes the
Gaussian radial basis function (RBF) kernel [25,31,38,41,42]:

kðxr ,xsÞ ¼ exp
�Jxr�xsJ

2

s2

 !
, ð2Þ

where xr and xs are image vectors of gray-value and s is the
variance of the pixel intensity. We then compute an ni�nj kernel
matrix Kij according to the kernel function kðxr ,xsÞ [25], which
gives each element of Kij as follows:

ðKijÞrs ¼fT
ðxi

rÞfðx
j
sÞ ¼ kðxi

r ,x
j
sÞ, ð3Þ

where xi
r is the r-th image in the image set Xi and xj

s is the s-th
image in Xj; r¼1,y,ni, s¼1,y,nj.

As shown in Fig. 3, the kernel subspace Pi for each image set Xi

in F is obtained by performing KPCA using the kernel matrix Kii,
i.e. j¼ i. Note that fðXiÞ in this KPCA case is not centered in
F [31,33,36] as the linear subspaces obtained from the correlation
matrix in these studies [19–21]. By applying singular value
decomposition (SVD) to Kii, we can obtain

Kii ¼ aiGaT
i , ð4Þ

where ai denotes an ni�ni matrix of eigenvectors and G denotes
an ni�ni diagonal matrix of eigenvalues. In accordance with the
theory of reproducing kernels, ei

p (the p-th eigenvector of Pi) can
be expressed as the linear combination of mapped images:

ei
p ¼

Xni

s ¼ 1

ai
spfðx

i
sÞ: ð5Þ

The coefficient ai
sp is the s-th component of the eigenvector

corresponding to the p-th largest eigenvalue of Kii. Denoting the
number of bases of Pi as d, Pi can be represented as the span of the
eigenvectors fei

pg
d
p ¼ 1, i.e. Pi ¼ ½e

i
1, . . . ,ei

d�. In the proposed training
process, a kernel subspace PiARh�d is exploited to represent the
nonlinear manifold for each image set Xi.

4.2. The kernel discriminant transformation (KDT) algorithm

With kernel subspaces Pi standing for image sets Xi (i¼1,y,
m), a kernel discriminant transformation (KDT) algorithm is then
proposed based on the kernel Fisher discriminant formulation [40]
to obtain an optimal representation for the KDT matrix T. The idea
of the matrix T is to transform each kernel subspace such that the
correlation between kernel subspaces of different subjects is
minimized, while that between kernel subspaces of the same
subject is maximized. In order to measure the correlation
between two subspaces, we present a different perspective from
canonical correlation [22], called canonical difference in this paper.
The formulation for the KDT matrix T is presented in Section 4.2.1.
While the explicit solution of T is intractable, we provide an
optimized solution through the KDT algorithm in Section 4.2.2.
Finally, the bounds of the number of bases for T and the complex-
ity of the proposed algorithm is analyzed in Section 4.2.3
and 4.2.4, respectively.

4.2.1. Formulation

The main idea of the KDT algorithm is to find an h�w KDT
matrix T which maximizes the correlation of within-subspaces
and minimizes that of between-subspaces, such that the relation-
ship between the entire kernel subspaces in the training database
can be established. The KDT matrix T consists w bases in the high-
dimensional feature space F , where the dimensionality is h. Let
TT Pi denote the kernel subspace Pi transformed by T. To satisfy
the definition of canonical correlation [22,31,33,36], each TT Pi is
required to be unitary orthogonal bases. In this study, the
normalization process is performed by applying a QR-decomposi-
tion operation to each instance of TT Pi:

TT Pi ¼Q iRi, ð6Þ

where Qi is a w�d orthonormal matrix and Ri is a d� d invertible
upper triangular matrix. Rewriting Qi corresponding to TT Pi as

Q i ¼ TT PiR
�1
i ð7Þ

the similarity measure of canonical correlation between Qi and Qj

can then be expressed in the form

L¼FT
ijQ

T
i Q jFji ¼ CT

i Cj s:t: L¼ diagðs1, . . . ,snÞ, ð8Þ
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where Fij and Fji are eigenvectors and fs1, . . . ,sng are eigenvalues
of the SVD on Q T

i Q j. The canonical subspaces are defined as
Ci ¼Q iFij ¼ ½u1, . . . ,ud� and Cj ¼Q jFji ¼ ½v1, . . . ,vd�, respectively,
where Fij and Fji are rotation matrices [22] of Q i,Q j, and uk,vk

(k¼1,y,d) are the canonical vectors in F . For illustration purpose,
we show in Fig. 4 the eigenvectors, canonical vectors, and
corresponding differences in image space, while in our work,
the image space is mapped to a high dimensional feature space F .
As shown in Fig. 4, canonical vectors can more effectively capture
the facial expression and lighting condition variations in each
image set than the eigenvectors.

From a geometric perspective, the difference between two
unitary vectors is proportional to the angle between them, as
shown in Fig. 5. Since canonical vectors uk, vk in Ci, Cj are unitary
vectors, the difference dk between uk and vk, i.e. dk ¼ uk�vk, is
proportional to their included angle. Similar to canonical correla-
tion, the canonical difference is used to measure the similarity
between two unitary orthogonal subspaces from a different
viewpoint. Specifically, the greater the similarity between the
two subspaces, the smaller the value of the canonical difference.
The canonical difference is defined in terms of the squared sum of
distances JdkJ

2 between all the vectors in canonical subspaces Ci

and Cj:

CanonicalDiff ði,jÞ ¼
Xd

k ¼ 1

Juk�vkJ
2
¼ traceððCi�CjÞ

T
ðCi�CjÞÞ: ð9Þ
Fig. 4. Conceptual illustration in image space. Facial images in each row represent

(a) an image set, (b) eigenvectors and corresponding differences, and (c) canonical

vectors and corresponding differences. In (b) and (c), the first two rows show the

first five eigenvectors (or principal components) and first five canonical vectors,

while the third row shows the difference between them.

u1

v1

v2

u2

Canonical subspace C1
d1

d2
Canonical subspace C2

Fig. 5. Conceptual illustration of canonical differences, in which the canonical

subspaces C1, C2 of image sets X1, X2 are spanned by the orthonormal vectors

½u1 , . . . ,ud� and ½v1 , . . . ,vd�, respectively. According to geometrical principles, the

difference di between ui and vi , i.e. di ¼ vi�ui , is proportional to the angle

between them. In the proposed face recognition system, the canonical difference

is used to measure the similarity between kernel subspaces. Specifically, the

greater the similarity between X1 and X2, the smaller the value of the canonical

difference is.
It is observed from Eq. (9) that when two canonical subspaces are
separated by a small distance, the trace term yields a small value
for the sum of the diagonal elements. With the definition of
canonical differences, we now begin to develop the KDT formula-
tion: we apply the definition of the canonical subspaces given
above and rewrite Eq. (9) as

CanonicalDiff ði,jÞ ¼ trððQ iFij�Q jFjiÞ
T
ðQ iFij�Q jFjiÞÞ: ð10Þ

Substituting Eq. (7) into Eq. (10), the canonical difference can be
expressed as

CanonicalDiff ði,jÞ ¼ trðTT
ðPiF0ij�PjF0jiÞðPiF0ij�PjF0jiÞ

T TÞ, ð11Þ

where F0ij ¼R�1
i Fij and F0ji ¼R�1

j Fji. The KDT matrix T can then be
formulated as the problem of maximizing the ratio of the
canonical differences of the between-subspaces to those of
the within-subspaces. In other words, finding the KDT matrix T
can be regarded as the optimization of Fisher’s linear discriminant
in F , i.e.

T¼ argmax
T

Pm
i ¼ 1

P
lABi

CanonicalDiff ði,lÞPm
i ¼ 1

P
kAWi

CanonicalDiff ði,kÞ

¼ argmax
T

traceðTT SbTÞ

traceðTT SwTÞ
, ð12Þ

where the between-scatter matrix Sb is given by

Sb ¼
Xm
i ¼ 1

X
lABi

ðPiF0il�PlF0liÞðPiF0il�PlF0liÞ
T

ð13Þ

and the within-scatter matrix Sw by

Sw ¼
Xm

i ¼ 1

X
kAWi

ðPiF0ik�PlF0kiÞðPiF0ik�PlF0kiÞ
T : ð14Þ

Note that the class label of the image set Xi is denoted by ci, while
the sets Bi ¼ fljclacig, Wi ¼ fkjck ¼ cig denote the class labels of the
between and within subspaces, respectively. The iterative proce-
dure performed to optimize Eq. (12) is summarized in Fig. 6.
4.2.2. Optimization

Since we have formulated the KDT problem as a Fisher’s linear
discriminant in high-dimensional feature space F , the solution of
the KDT matrix T is intractable because the formulation in
Eq. (12) depends on the variables P, F0ij and most importantly
on T as well. This means there is no explicit expression for T in
terms of the other two variables. Hence, an iteration procedure is
needed to obtain the optimal KDT matrix T. The procedure
commences by obtaining the scatter matrices Sb and Sw, which
are then taken as the input to the following loops. Note that in the
scatter matrix formulations of Eqs. (13) and (14), the kernel
functions cannot be substituted into the dot products
fT
ðxrÞfðxsÞ. The KDT matrix T, therefore, cannot be solved directly

by the eigen-decomposition problem of S�1
w Sb.

Here, we offer an alternative solution by reformulating Fisher’s
linear discriminant in F given in Eq. (12) to the form of kernel
Fisher discriminant (KFD). Assuming the number of training
images is M, i.e. M¼

Pm
i ¼ 1 ni, we apply the theory of reproducing

kernels to represent the vectors ftqg
w
q ¼ 1ATh�w as the span of all

the mapped training images:

tq ¼
XM
u ¼ 1

auqfðxuÞ, ð15Þ

where auq is an element of the M� d coefficient matrix a. Rather
than directly solving Eq. (12), we instead compute the



Fig. 6. Iterative optimization of the KDT matrix T. As shown, the solution procedure commences by applying an initialized T to each kernel subspace Pi. The reference

subspace Q i , canonical subspace Ci and F0ij are then computed following a QR-decomposition operation performed on TT Pi. The between-scatter matrix SB and within-

scatter matrix SW are then obtained in accordance with the canonical difference similarity measure. Taking the updated values of SB and SW as the new inputs, the

procedure is repeated iteratively to establish the optimized KDT matrix T.
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transformed kernel subspace TT Pi as

ðTT PiÞqp ¼
XM
u ¼ 1

Xni

s ¼ 1

auqai
spkðxu,xi

sÞ, ð16Þ

where ai
sp is obtained from Eq. (4) and kðxu,xi

sÞ is computed using
the u-th training image xu and the s-th image of the image set Xi.
Given TT Pi, the orthonormal bases matrix Q i and Q j are obtained
by the QR-decomposition operation (as shown in Eq. (6)) on TT Pi.
The rotation matrices Fij and Fji are computed through SVD on
Q T

i Q j. Then, F0ij and F0ji in Eq. (11) are obtained from R�1
i Fij and

R�1
j Fji, respectively. By substituting ei

p in Eq. (5) into the bases of
Pi, the rotated kernel subspace ~Pij for Pi can be expressed as

~Pij ¼ PF0ij ¼ ½ ~e
ij
1, . . . , ~e ij

d�, ð17Þ

where the p-th basis vector is computed by

~e ij
p ¼

Xd

r ¼ 1

Xni

s ¼ 1

ai
srF
0rp
ij fðx

i
sÞ: ð18Þ

Through the multiplication of Eq. (15) and Eq. (18), it can be
shown that TT ~Pij ¼ aZij, where each element of Zij has the form

ðZijÞup ¼
Xd

r ¼ 1

Xni

s ¼ 1

ai
srF
0rp
ij kðxu,xi

sÞ, ð19Þ

where u¼1,y,M and p¼1,y,d. Note that Zij is tractable as a
result of replacing the dot products fT

ðxrÞfðxsÞ with kðxi,xjÞ in
Eq. (19). Applying the definitions of tq in Eq. (15), ~eij

p in Eq. (18)
and Zij in Eq. (19), the denominator of Eq. (12) can be derived as
follows:

TT SwT¼
Xm

i ¼ 1

X
kAWi

Xd

r ¼ 1

½TT
ð ~eki

r � ~e
ik
r Þð ~e

ki
r � ~e

ik
r Þ

T T�

¼
Xm
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Ta� ¼ aT Ua, ð20Þ

where a is an M�d coefficient matrix, and U ¼
Pm

i ¼ 1P
kAWi
ðZki�ZikÞðZki�ZikÞ

T is an M�M within-scatter matrix.
Utilizing a similar procedure to that used to derive Eq. (20), the
numerator of Eq. (12) can be rewritten as

TT SbT¼ aT Va, ð21Þ

where V¼
Pm

i ¼ 1

P
lABi
ðZli�ZilÞðZli�ZilÞ

T is an M �M between-
scatter matrix. Combining Eqs. (20) with Eq. (21), the problem
of optimizing Fisher’s linear discriminant given in Eq. (12) can be
reformulated as the problem of maximizing the following KFD
formulation:

JðaÞ ¼ traceðaT VaÞ
traceðaT UaÞ : ð22Þ

As in the problem encountered by the multi-dimensional Fisher’s
linear discriminant, a can be found by solving the eigenvectors
corresponding to the descending eigenvalues of U�1V. Although
several effective methods [43] have been proposed for solving this
problem in the case that U is not invertible, here we keep it
simple by adding a small value m ðm¼ 0:001Þ to its diagonal
terms [39,40], i.e.

Um ¼UþmI: ð23Þ

Thus, the inverse U�1
m is guaranteed to exist due to the resulting

non-singularity of matrix Um. Finally, the solution of a is obtained
to represent the coefficients of the bases of T by explicitly
computing the leading eigenvectors of U�1

m V. The iterative proce-
dure of the proposed KDT algorithm is summarized in Fig. 7.

The KDT problem is based on the resolution of maximizing the
kernel Fisher’s discriminant (KFD) formulation: JðaÞ ¼ traceðaT VaÞ=
traceðaT UaÞ. Our possible approach for solving this problem is to
use a 2-step alternative optimization algorithm, followed for
example in a different context [44]. The first step of this solution
would consist in solving the rotation matrix Fij while considering
that the M�w matrix a is fixed. Then, the second step consists in
updating a through solving the KFD formulation toward the
maximum of the objective function JðaÞ. Once a has been obtained
by calculating the eigenvectors of U�1V corresponding to w great-
est eigenvalues, the rotation matrix Fij for the next iteration can be
computed. This algorithm stops when an iteration yields a change
less than e in the objective value. Although we do not provide a
mathematical proof of convergence of the proposed optimization
algorithm, the experiments and analysis have been discussed
in Section 6.2.1 to confirm this property.

4.2.3. Bounds of the number of bases for the KDT matrix

The KDT algorithm solves an optimal coefficient matrix for
representing the KDT matrix T. Given the KFD formulation in
Eq. (22), the solution to a is restricted by the rank of matrices U
and V. According to the definition of matrix Z in Eq. (19) where
rankðZÞ ¼ d, the rank of matrices U and V are bounded by

drrankðUÞrminðM,m� ðn�1Þ � d=2Þ ð24Þ

and

drrankðVÞrminðM,m� ðm�nÞ � d=2Þ, ð25Þ

where n is the number of training image sets for each subject, N is
the subject (class) number and m¼N�n is the total number of
training image sets. To solve JðaÞ by eigenvectors corresponding to



Fig. 7. The proposed kernel discriminant transformation (KDT) algorithm (ni: the number of images per image set; d: the number of bases of kernel subspace Pi; w: the

number of bases of the KDT matrix T; m: the number of training image sets; M: the number of training images.)
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the largest eigenvalues of the M�M matrix U�1V [40], we must
ensure that U is invertible. According to Eq. (24), if matrix U is full
rank of M, i.e. m� ðn�1Þ � d=2ZM, then the inverse of U exists.
Assume that each image set consists of the same number of
images ni, this inequality can be rewritten by m¼N�n and obtain

Nd� nðn�2Þ=2ZM¼N � n� ni: ð26Þ

Eliminating the common terms on both sides of the equal mark, it
can be simplified as dðn�1ÞZ2ni. In this study, the number of
bases in each kernel subspace, d, is set to the same value as ni,
which gives

nZ3: ð27Þ

Thus, the existence of U�1 can be guaranteed by the inequality
that the number of training image sets per subject is greater than
or equal to three. On the other hand, if matrix U is not full rank of
M, a small value m can be added to the diagonal terms of U [39,40]
as Eq. (23).

By replacing m with N�n and n¼3, we can observe that the
number of bases, w, for the transformation matrix T is determined
by rankðU�1VÞ, where

rankðU�1VÞrrankðVÞ

¼minðM,m� ðm�nÞ � d=2Þ

¼minðM,9d� ðN2�NÞ=2Þ: ð28Þ

The matrix V is full rank if 9d� ðN2�NÞ=2ZM; otherwise, the
rank of matrix V is bounded by 9d� ðN2�NÞ=2, which mainly
depends on the number of subjects N. Substituting M by
N � ni � n, the inequality 9d� ðN2�NÞ=2ZM can be simplified to

NZ1þ
2ni

3d
: ð29Þ

Given ni¼d and n¼3 in our study, we can infer from the above
inequality that the number of classes NZ2, which implies the
matrix V is full rank of M. Therefore, the number of bases for the
KDT matrix T, w, is bounded to the number of training images M.

4.2.4. Complexity analysis

The proposed KDT optimization algorithm requires OðM3Þ time
where M is the number of training images. As shown in Fig. 7, the
computational complexity is discussed by splitting the proposed
algorithm into four major operations, including singular value
decomposition (SVD) (line 2, 9), matrix multiplication (line 5, 11,
13, 14), matrix inversion (line 10, 15) and eigenvalue decomposi-
tion (line 15).

First, the computational time for performing an SVD on Kii

(line 2) and Q T
i Q j (line 9) are Oðn3

i Þ and Oðd3Þ, respectively.
Second, for each transformed kernel subspace, the complexity of
matrix multiplication (line 5) and QR decomposition (line 6) is
Oðwd�MniÞ and Oðw2 � dÞ, respectively. In addition, the com-
plexity of computing matrix Z (line 11) is OðM2 � dniÞ, and those
for within-scatter matrix U (line 13) and between-scatter matrix
V (line 14) are OðM2 � dnwÞ and OðM2 � dnbÞ, respectively, where
nw and nb represent the number of within-subspaces and the
number of between-subspaces. Since Ri (line 10) is d�d and U
(line 15) is M�M, we refer the complexities of computing R�1

and U�1 to Oðd2logdÞ and OðM2logMÞ, respectively. Finally, in line
15, the eigenvalue problem costs OðM3Þ computations to obtain
eigenvectors of U�1V, where M is the number of columns (or
rows) of U�1V. Overall, the entire computational complexity is
referred to OðM3Þ, where solving the eigenvalue problem in line
15 is the most significant part for the whole algorithm, since the
number of training data M is often larger than ni, nw, nb and the
number of bases of kernel subspace d. The overall computational
complexity is summarized in Table 1.

4.3. Reference subspace creation using the optimal KDT matrix

Above discussion is the acquisition of the optimal KDT matrix
T that produces the maximal canonical differences of between-
subspaces and the minimal canonical difference of within-sub-
spaces. For all kernel subspaces Pi, the orthonormal terms
obtained from the QR-decomposition on each transformed kernel
subspace TT Pi are defined as the reference subspace:

Ref i ¼ TT PiR
�1
i : ð30Þ

Here, we have avoided the problem of performing operations of
dot products in a high (or even infinite) dimensional feature space
F by the use of kernel functions, i.e. each element of TT Pi is
directly computable in accordance with Eq. (16).



Table 1
Summary of computational complexity of the proposed KDT method.

Operation Details Complexity

Singular value decomposition

(SVD)

SVD on Kii Oðn3
i Þ

SVD on Q T
i Q j Oðd3Þ

Matrix multiplication Compute TT Pi
OðwdMniÞ

QR-decomposition of TT Pi Oðw2dÞ

Compute matrix Z OðM2dniÞ

Compute within-matrix U OðM2dnwÞ

Compute between-matrix V OðM2dnbÞ

Matrix inversion Inverse of R Oðd2logdÞ

Inverse of U OðM2logMÞ

Eigenvalue solution Eigen-decomposition of

U�1V

OðM3Þ

Overall complexity: OðM3Þ.

ni: the number of images per image set.

d: the number of bases of kernel subspace Pi.

w: the number of bases of the KDT matrix T.

M: the number of training images.
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5. Test process

As shown in Fig. 2(b), the testing process begins by acquiring
the image set Xtest consisting of ntest 20�20-pixel facial images.
The kernel subspace Ptest corresponding to Xtest is then generated
by KPCA using Eqs. (3) and (4), and the transformed kernel
subspace TT Ptest is computed using the optimized KDT matrix T
associated with Eq. (16). Eq. (30) is then applied to TT Ptest to
obtain the corresponding reference subspace Reftest. Finally, by
applying Eqs. (7) and (10) to the testing reference subspace and
each of the training reference subspaces, respectively, a recogni-
tion result can be found as the class label ci of the training
reference subspace yielding the minimal canonical difference, i.e.

id¼ argmin
ci

CanonicalDiff ði,testÞ, ð31Þ

where id is the recognition result which belongs to the set of class
labels, i.e. idAfciji¼ 1, . . . ,mg and test represents the index of the
testing image set Xtest .
6. Experimental results

We evaluate the performance of the proposed image set-based
face recognition system using two databases, the Yale Face
database B [45,46] and a self-compiled database. This section
commences by describing the contents of the two databases and
discussing the various categories of images within them. Experi-
ments are then conducted to investigate the optimal parametric
settings of the proposed KDT algorithm. Finally, our recognition
performance are compared with existing still-image-based and
image set-based methods.

6.1. Database contents

The Yale Face database B (shortened for convenience hereafter
as YaleB) comprises 38 subjects and each subject contains 585
facial images with different head motions (or poses) and lighting
conditions. Meanwhile, the self-compiled database consists of 32
subjects with arbitrary poses and either lighting variations or
facial expression variations. The image sequences in the self-
compiled database were recorded using a digital video camera at
a rate of 30 fps with a resolution of 320�240 pixels. For both
databases, we cropped out facial images from each frame using
the cascaded face detection algorithm [47]. Each facial image was
resized to the 20�20-pixel resolution to compare our perfor-
mance with existing image set-based methods [22,31,32], where
the authors also employed 15�15 or 20�20 resolution for
experiments.

For the YaleB database, we selected facial images with the light
source azimuth and elevation angle ranging from �853 to þ853

and �403 to þ403, respectively. A positive azimuth or panning
angle implies that the light source direction or facial pose are
toward the right side of the subject, while a negative angle
implies that it is toward the left side. Similarly, a positive
elevation or tilt angle implies that the light source direction or
facial pose are above the horizon, while a negative angle implies
the inverse direction. Each facial pose contains one of the nine
simultaneous pan and tilt rotations according to inclinations of 01,
121 or 241 from the optical axis of the camera [45,46]. For the
self-compiled database, we collected the facial images associated
with lighting direction of azimuthal angles varying from �903 to
þ903 and an elevation angle of 01. Each facial image exhibited an
arbitrary pose setting of a pan angle ranging from �453 to þ453

and a tilt angle from �403 to þ403. In addition, we compiled facial
images associated with four common facial expressions including
neutral, smile, surprise and disgust. These images were acquired
under the same pose settings and indoor-ambient lighting
conditions.

In order to investigate the recognition capabilities of the
proposed system for facial images with variations such as lighting
conditions and facial expressions, we sort the images of each
database into three categories (denoted as LightingYaleB, Lighting

and Expression) in accordance with their appearance variations. As
summarized in Tables 2 and 3, the facial images of each subject
within each category are manually partitioned into several groups
to represent different varieties. For example, in the LightingYaleB

category, 120 dissimilar facial images of each subject were by
hand assigned to each of the three groups, YaleB1, YaleB2 and
YaleB3, according to the azimuthal position of the light source.
Each subject therefore contains a total of 360 (3 groups�120)
facial images in this category. The same procedure of partitioning
groups associated with their appearance variation was then
applied to build up the Lighting and Expression categories. Note
that each group of these categories contains 120 dissimilar facial
images for each subject. Fig. 8 shows typical facial images within
the LightingYaleB, Lighting and Expression categories. In the follow-
ing experiments, we randomly separated the 120 facial images of
each subject into four image sets to capture the scattering of
within-subspaces.

6.2. Optimal KDT algorithm parametric settings

This section discusses the parametric settings by analyzing the
convergence properties of the proposed KDT algorithm and
investigating its sensitivity to the number of bases w of the KDT
matrix T. To reduce the variation in evaluating the parameters,
the experiments were performed using images selected from one
group in each category, namely YaleB2, FrontalLight and Neutral. In
each group, four image sets, each of which contains 30 images,
were selected for each subject: three for training purposes and
one for testing. The variance term s of the Gaussian RBF kernel in
Eq. (2) was set as 0.05.

6.2.1. Convergence property of the KDT algorithm

The proposed KDT algorithm obtains an optimal KDT matrix T
through an iterative learning procedure until the Jacobian value
JðaÞ changes less than a small value e. As shown in Fig. 7, the
algorithm starts by a random initialization of the coefficient
matrix a. In order to explore the convergence property of the



Table 2
Details of facial images in LightingYaleB category in YaleB database [45,46] and Lighting category in self-compiled database.

Category Group Light source direction Facial pose

LightingYaleB (lighting+pose) YaleB1 Azimuth: �853 to �303

Elevation: �403 to þ403 Pan: �243 , �123 ,03

YaleB2 Azimuth: �303 to þ303 Tilt : �243 ,�123 ,03 ,þ123 ,þ243

Elevation: �403 to þ403

YaleB3 Azimuth: þ303 to þ853

Elevation: �403 to þ403

Lighting (lighting+pose) LeftLight Azimuth: �901, �601, �301

Elevation: 01

FrontalLight Azimuth: �301, 01, +301 Pan: �453 to þ453

Elevation: 01 Tilt: �403 to þ403

RightLight Azimuth: +301, +601, +901

Elevation: 01

Table 3
Details of facial images in Expression category in self-compiled database.

Category Group Facial
expression

Facial pose

Expression

(expression+pose)

Neutral Neutral

Smile Smile Pan: �453 to þ453

Disgust Disgust Tilt: �403 to þ403

Surprise Surprise

YaleB2

YaleB3

YaleB1

Frontal-light

Right-light

Neutral Disgust

Smile Surprise

Fig. 8. Typical examples of facial images in LightingYaleB, Lighting and Expression

categories. (a) YaleB1, YaleB2, YaleB3 groups (corresponding to different azimuthal

angle ranges and a constant elevation angle range of �403
2þ403), (b) LeftLight,

FrontalLight, RightLight groups (corresponding to different azimuthal angle ranges

and a constant elevation angle of 01), and (c) Neutral, Smile, Disgust, and Surprise

groups.
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KDT algorithm, the training process was performed using three
randomized initializations of a with three selected image groups
YaleB2, FrontalLight and Neutral. Figs. 9(a)–(c) illustrate the
corresponding convergence curves for the three groups. The
y-axis indicates JðaÞ computed in Eq. (22), while the x-axis
indicates the number of iterations of the KDT algorithm. It can
be seen that the convergence curves for YaleB2 and FrontalLight

oscillate more severely than that for Neutral because the training
data in the former groups are affected more severely by lightings
and distribute more complex for optimization. In every group,
however, JðaÞ tends to converge toward a similar value with the
increasing number of iterations regardless of the initial value
assigned to a. In this experiment, the value of JðaÞ is apt to be
stable within approximately 3.4 iterations on average. The result
implies that the KDT algorithm would converge among a number
of iterations using arbitrary initialization of a. Moreover, it is
observed that the JðaÞ convergence curves are very similar in
these figures, which could be inferred that the KDT algorithm
provides a robust optimization performance against the nature of
the appearance variations in the training images.

6.2.2. The number of bases for the KDT matrix

As shown in Eq. (15), the KDT matrix T is directly related to the
total number of training images M. To determine an appropriate
number of bases w for T, a series of experiments were performed
using different values of w with YaleB2 and Neutral groups. For the
YaleB2 group, the training experiments were conducted using
three training sets of different sizes: N¼12,22,32 subjects corre-
sponding to m¼36,66,96 (m¼N�n, n¼3) image sets and a total
of M¼1080,1980,2880 (M¼m�ni, ni¼30) images, respectively.
Similarly, for the Neutral group, the number of training sets
N¼12,22,32 in accordance with m¼48,88,128 (m¼N�n, n¼4)
image sets and M¼1440,2640,3840 (M¼m�ni, ni¼30) training
images.

We evaluate the KDT algorithm by comparing its performance
with the KCMSM method which also considers a discriminative
transformation subspace for all kernel subspaces in the feature
space F . Fig. 10 illustrates the relationship between the recogni-
tion rate of these methods and the dimensionality w in terms of
the percentage of M. Figs. 10(a)–(c) present the results for the
YaleB2 group, while (d)–(f) present those for the Neutral group.
Although the difference of the average performance between the
upper and lower sets of figures is probably meaningless, the
recognition rate is higher in Neutral than in YaleB2, which could
be also explained by complicated manifolds of associated data
groups. It can be seen that after the number of bases w for the
KDT matrix reaches a certain value (here w� 0:7M), the identi-
fication rate of KDT saturates at an approximately constant value
of 100%. However, at lower values of w, both KCMSM and KDT
methods suffer from inferior accuracy due to the lack of the
number of bases for the transformation subspace to provide
sufficient discrimination. Apparently, the choice of w for the
KDT matrix is more insensitive to the size of the training set M

than that for KCMSM when w is large enough for discriminating
these kernel subspace.

6.3. System performance evaluation

The recognition performance of the proposed system was
evaluated by conducting experiments corresponding to two
experimental protocols, denoted as Experiment1 and Experiment2.



Fig. 9. Convergence of Jacobian function JðaÞ with respect to the number of iterations of KDT algorithm. Note that (a), (b) and (c) correspond to the YaleB2, FrontalLighting

and Neutral groups, respectively, with three different initializations of a in every case.
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Fig. 10. Variation of identification rate with choice of dimensionality w of KDT matrix T. (a)–(c) illustrate the identification rates for N¼12,22,32 training subjects in the

YaleB2 group, respectively, corresponding to m¼36,66,96 and M¼1080,1980,2880 training images. (d)–(f) illustrate the identification rates for N¼12,22,32 training

subjects in the Neutral group, respectively, corresponding to m¼48,88,128 and M¼1440,2640,3840 training images.
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In the first protocol, three image sets per subject were randomly
selected from one group for training purposes, while the remain-
ing image sets in the same group were used for testing. We
conduct the experiments by using three training/testing combi-
nations of image sets to report the recognition rate for each group.

In the second protocol Experiment2, one image set was ran-
domly selected from each group in a category for training
purposes, and the testing process uses two remaining image sets
out of each group within the same category. As Experiment1, this
protocol is also performed three times with different training/
testing combinations. The difference between two protocols is
that in Experiment1, the training and testing data were compiled
by image sets from one group, while in Experiment2, images were
selected from different groups, and therefore extends Experiment1

to a wider-range of challenges. Specifically, we intend to evaluate
the performance in a controlled environmental variation using
Experiment1 protocol and a wider environmental variation using
Experiment2. For example, the azimuthal angle of the light source
varies from �853 to �303 in YaleB1 of Experiment1, but is extended
to the range �853

2þ853 when conducting Experiment2 using the
facial images in the LightingYaleB category.

For consistent comparisons between different methods in the
following experiments, we use N¼32 subjects with each subject
having n¼3 training image sets in LightingYaleB and Lighting

categories, and n¼4 image sets in the Expression category. Based
on the results discussed in Section 6.2, the number of iterations
and the number of bases w is, respectively, fixed at 5 and 0.7M for
the evaluation trails. A further series of experiments was per-
formed using the Experiment2 protocol to compare the recogni-
tion performance of the proposed system with those of two still-
image-based as well as four image set-based methods.
6.3.1. Evaluation of system performance under different poses,

lighting conditions and facial expressions

In developing automatic face recognition schemes for practical
surveillance systems, robustness toward varying poses, light
conditions and facial expression is particularly important since
the testing images are possibly acquired at any location and any
time of the day or night. We evaluate the robustness of the
proposed system to these variations by applying Experiment1 and
Experiment2 protocols to the LightingYaleB, Lighting and Expression

categories. Each protocol was performed three times to ensure an
unbiased comparison of performance between different groups.

As summarized in Table 4, the average recognition rate using
the Experiment1 protocol is 0.8 percentage points higher com-
pared to those using Experiment2, because Experiment1 includes
the same range of appearance variation for both training and
testing processes such that the KDT matrix provides a more
discriminant transformation for testing subspaces. In the Light-

ingYaleB category, the group of YaleB2 obtains 1.2 percentage
points better performance than the other two groups. The lighting



Table 4
Summary of face recognition results obtained using Experiment1 and Experiment2

protocols for facial images in LightingYaleB, Lighting and Expression categories. Note

that for both protocols, each experiment is performed on three training/testing

combinations of image sets for reporting the recognition rate.

Category Group Experiment1 (%) Experiment2 (%)

LightingYaleB YaleB1 97.771.56 96.971.56

YaleB2 99.271.56 97.970.90

YaleB3 98.471.80 96.970.90

Lighting LeftLight 98.471.80 97.470.90

FrontalLight 99.271.56 98.471.56

RightLight 99.271.56 98.471.56

Expression Neutral 100.070.00 98.470.00

Smile 99.271.56 98.471.56

Disgust 98.471.80 97.972.39

Surprise 97.771.56 98.471.56

Average 98.7 97.9

Table 5
Comparison of face recognition results (Avg7Dev%) obtained using proposed KDT

method and still-image-based methods in LightingYaleB, Lighting and Expression

categories. The experimental procedures are performed in accordance with the

Experiment2 protocol.

Category 1NN-PCA

(%)

1NN-LDA

(%)

10NN-PCA

(%)

10NN-LDA

(%)

KDT (%)

LightingYaleB 82.371.7 89.471.4 85.771.6 92.471.0 97.270.6

Lighting 83.571.5 90.871.2 86.871.2 93.670.6 98.170.5

Expression 84.371.4 91.271.3 87.171.3 94.370.5 98.370.3

Average 83.3 90.5 86.5 93.4 97.9
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from the front of faces involves slighter influences on providing
discriminatory subspace information for classification than that
from the lateral of faces. It is not surprising that larger variations
across data behaviors result in more loss of recognition rates. By
similar explanation, the FrontalLight and the Neutral achieve
0.4 and 1.6 percentage points higher accuracy over the other
groups in Lighting and Expression categories, respectively. The
average recognition rate of Lighting exceeds that of LightingYaleB

by 0.5 percentage points because the illumination setting of the
YaleB database is much sharper. Overall, the proposed KDT
algorithm correctly recognizes average 98.2% of the subjects using
two protocols in these categories.

6.3.2. Comparison of performance of the proposed system with

existing still-image-based systems

In this section, we compare the recognition performance of the
proposed system with those of still-image-based methods. The
experimental procedure was performed using Experiment2 proto-
col described above. The performance of still-image-based meth-
ods was evaluated by k-nearest neighbor (k NN) of images
transformed by PCA and LDA [9,26] subspaces. We chose the
dimensionality of PCA subspace as 130 to preserve 98% of training
data energy. Note that the first three eigenvectors were removed
to reduce the lighting variations. The dimensionality of LDA
subspace was set at 37 for the YaleB database and 31 for the
self-compiled database. In the evaluation of k NN methods, we
examined the k nearest projection vectors for each image set in
the PCA or LDA subspaces. The number of bases of the KDT matrix
T is specified as 0.7M, i.e. w¼2016 for LightingYaleB and Lighting

categories and w¼2688 for the Expression category. Based on a
voting process, the recognition result for each testing image set
was obtained as the training set which contributes the most to
these projection vectors.

The training image sets for both still-image-based methods
and the KDT method are selected as the same, while two
remaining image sets for each group are randomly selected to
report the recognition result. The recognition results obtained by
still-image-based methods and the KDT method within the three
categories are summarized in Table 5, where each entry gives the
average recognition rate and the corresponding standard devia-
tion. Totally we utilized 576 testing image sets for LightingYaleB

and Lighting categories and 768 for the Expression category. As
shown, k NN-PCA gave the worst recognition rate among all
methods in this experiment. On the other hand, k NN-LDA
computes the discriminative subspace for all input images and
yields a 7.0 percentage points improvement over k NN-PCA on
average. The KDT method utilizes multiple testing images to span
corresponding subspaces rather than testing each still image
separately, and therefore contains more distinct information for
classification. As a result, the proposed KDT method outperforms
conventional still-image-based methods and obtains an average
recognition rate of 97.9 percentage.
6.3.3. Comparison of the proposed system with existing image set-

based systems

Five existing image set-based methods, namely mutual sub-
space method (MSM) [19], discriminant-analysis of canonical
correlation (DCC) [22], the nonlinear kernel mutual subspace
method (KMSM) [33,36], kernel orthogonal mutual subspace
method (KOMSM) [32] and the proposed kernel discriminant
transformation (KDT) method were compared. The parameters
used in MSM, DCC, KMSM and KOMSM were also carefully tuned
referring to original studies. In every case, the experimental
procedure was employed using the Experiment2 protocol
described in Section 6.3.1. Totally 576 testing image sets was
utilized for the LightingYaleB category and the Lighting category
while 768 testing image for the Expression category. The settings
for the KDT matrix T is the same as that mentioned in Section
6.3.2. Meanwhile, for MSM and DCC methods, PCA was performed
to compute the orthonormal basis matrix for the linear subspace
of each image set; the number of bases of each linear subspace
was assigned to 8 to preserve 98 percentage of data energy. For
kernel-based methods, i.e. KMSM, KOMSM and KDT, the number
of bases of each kernel subspace was specified as 30 (d¼30) while
a value of s¼ 0:05 was used for the Gaussian RBF kernel based on
the result of preliminary experiments. The number of bases of the
transformation matrix of the DCC method was specified as 350.
The dimensionality of the whitening transformation matrix in the
KOMSM method was also assigned to a value of 70% of the
number of training images as the same number of bases w of the
KDT matrix T.

The recognition results were obtained by applying the five
methods to each group of the three categories. As summarized
in Table 6, each entry gives the average recognition rate and the
corresponding standard deviation over the same training/testing
combinations as the experiments on still-image-based methods
in Section 6.3.2. Despite that 10NN-LDA is a still-image-based
method, it is interesting that it obtains similar performance as the
MSM method. The reason might be that LDA transforms all inputs
to a more discriminative subspace while MSM does not. Besides,
MSM also lacks the ability of tackling nonlinear structures even
though it achieves higher performance then 10NN-PCA by 6.3 per-
centage points on average. On the other hand, the KMSM method
includes nonlinear manifold modeling by applying the ‘‘kernel
trick’’ to MSM, and brings about 1.4 percentage points arise of the
recognition rate. Again, analogous to MSM, KMSM faces the
problem of lacking discriminative transformation and yields the
worst performance of the three comparative kernel methods.



Table 6
Comparison of face recognition results (Avg7Dev%) obtained using the proposed

KDT method and four existing image set-based methods for LightingYaleB, Lighting

and Expression categories.

Category MSM (%) KMSM (%) DCC (%) KOMSM (%) KDT (%)

LightingYaleB 91.771.3 93.471.2 95.170.8 95.370.6 97.270.6

Lighting 93.471.1 94.470.9 96.570.5 96.570.5 98.170.5

Expression 93.571.0 94.871.0 96.970.4 97.070.4 98.370.3

Average 92.8 94.2 96.1 96.3 97.9

Fig. 11. Examples of facial images in the LFW dataset [48]. Different rows show

different persons, respectively.

Table 7
Comparison of face recognition results (Avg7Dev%) on the LFW dataset.

Category MSM (%) KMSM (%) DCC (%) KOMSM (%) KDT (%)

LFW 30.775.9 32.374.0 59.773.1 62.074.4 65.373.2
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The DCC method, considering a linear discriminant function
that maximizes the canonical correlations of within-class image
sets and minimizes those of between-class image set, obtains
better performance over MSM and KMSM methods in terms of
3.3 and 1.9 percentage points of recognition rate. The KOMSM
method provides greater accuracy by modifying KMSM with a
pre-application of a kernel whitening transformation matrix.
While the result of KOMSM is about 2.1 percentage points greater
than KMSM, the proposed KDT algorithm is superior to all
existing methods discussed in this literature. For the LightingYaleB

category compiled by facial images under more severe lighting
conditions, the recognition result is about 1.0 percentage point
lower than that of the other two categories. For the self-compiled
Lighting category, the KDT algorithm still contains better recogni-
tion performance compared to other existing methods using three
data categories. It is notable that the lowest standard deviation of
the recognition rate is obtained and confirms the robustness of
the proposed system.

6.3.4. Experiments on large dataset: Labeled Faces in the Wild

The Labeled Faces in the Wild (LFW) [48] dataset offers a
collection facial images captured from the media. It consists of
1680 subjects with two or more images. While our method is
intended for recognizing facial images based on image sets rather
than single images, we ignore the official LFW experimental
protocol and devise our own. Thus, we use a subset of the LFW
dataset which consists of 100 subjects having at least 10 images.
For this dataset, each facial image was cropped using the cascade
face detector [47], and resized into 20�20 resolution. Fig. 11
shows example images from the LFW dataset used in our experi-
ments. Note that the facial images consist of more uncontrolled
variations such as head poses, facial expression, and lighting
conditions.

Since LFW has too few images per person for our framework,
we generate three more variations for each facial image. In the
end we have 40 facial images for each subject. The 40 images
were randomly separated into four image sets. Because LFW do
not have specific pose and illumination settings as the YaleB and
the self-compiled dataset, Experiment2 protocol is not applicable
in the case. Thus, we use Experiment1 protocol to conduct the
performance evaluation across the above image set-based meth-
ods. Note that we performed Experiment1 three times, and
reported the results using 1200 testing image sets. The results
are summarized in Table 7.

While the LFW contains too less images for image set-based
face recognition framework, we show, again, that MSM and
KMSM perform as the baseline methods as in the previous
experiments, since they do not consider discriminative informa-
tion between subspaces. Also, the LFW facial images contain more
uncontrolled variations than YaleB and the self-compiled dataset,
thus the standard variation of recognition accuracy is larger in
this experiment. From this point of view, kernel-based
approaches, i.e. KOMSM and KDT, perform 2.3 and 5.6 percentage
points arise than DCC by considering more nonlinearity, which
better describes the distribution of facial image sets.
6.3.5. Statistical significance analysis

We performed standard hypothesis testing techniques [49] to
verify the statistical significance in the comparison of five image
set-based methods listed in Tables 6 and 7. When comparing two
methods A and B, our hypothesis and the null hypothesis are
given by
H0
 A correctly recognizes testing image sets more often than B.

H1
 There is no difference how well A and B perform.
The probability of H0 is determined by a normalized variable z

according to the number of times that each method is succeed to
recognize the testing image set. The test statistic z is given by

z¼
pA�pBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pc ð1�pc Þ

mtest

q , ð32Þ

where pA and pB are the observed proportions of success in the
testing image sets for method A and B, pc ¼ ðpAþpBÞ=2, and mtest

is the number of testing image sets. Table 8 shows the results of
significant testing in the comparison of the KDT method and other
image set-based methods, including the number of image sets
correctly recognized by each method (mcorrect), z value, and
probability of H0 ðPH0Þ. We used a common cutoff level at 0.05,
i.e. H0 is rejected if PH0r0:05. Using this cutoff level, we analyze
the statistical significance between each pair of KDT and the
others.

We observe that for each pairwise comparison, KDT is demon-
strated to be statistically significant with a 0.05 cutoff. We can
also observe from the comparison of KDT between MSM and
KMSM that there are highly statistical significance with
PH0r0:002. This means that the possibility of H0 being correct
is less than or equal to 0.002. As a result, the KDT algorithm was
demonstrated to have statistically significant differences among
five image set-based methods discussed in this literature.



Table 8
Results of statistical significance testing in the comparison of the proposed KDT

method and four image set-based methods. Each testing image set are treated as

independent samples for each method. There are totally 576 testing image sets for

LightingYaleB and Lighting categories, 768 for the Expression category, and 1200 for

the LFW dataset. Note that mcorrect stands for the number of image sets correctly

recognized by each method; in this table, the left and right column of mcorrect

corresponds to the left and right column of Methods, respectively.

Category Methods mcorrect Variable z PH0
r

LightingYaleB MSM KDT 528 560 4.076 0.00002

KMSM KDT 537 560 3.047 0.00116

DCC KDT 548 560 1.852 0.03201

KOMSM KDT 549 560 1.697 0.04485

Lighting MSM KDT 539 566 4.061 0.00002

KMSM KDT 544 566 3.416 0.00032

DCC KDT 556 566 1.796 0.03625

KOMSM KDT 556 566 1.796 0.03625

Expression MSM KDT 718 755 4.743 0.00000

KMSM KDT 728 755 3.758 0.00009

DCC KDT 744 755 1.792 0.03657

KOMSM KDT 745 755 1.681 0.04638

LFW dataset MSM KDT 368 784 16.997 0.00000

KMSM KDT 388 784 16.171 0.00000

DCC KDT 716 784 2.867 0.00207

KOMSM KDT 744 784 1.698 0.04470
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7. Conclusions

This study introduces an image set-based face recognition system
based upon a novel kernel discriminant transformation (KDT) algo-
rithm. While the KDT matrix T cannot be explicitly calculated, the
proposed algorithm reformulates the original problem as the kernel
Fisher’s discriminant to implicitly optimize T using an iterative
procedure. We have shown that the number of bases for T is bound
to the number of training images M and the computational complex-
ity of the algorithm is OðM3Þ. Because the proposed system utilizes
image sets rather than single testing images, the KDT algorithm
increases the discriminant information as well as improves the
robustness toward variations in poses, facial expressions and lighting
conditions of the facial images. The experimental results have shown
that the KDT optimization algorithm converges irrespective of the
initialization conditions. The results have also shown that the
optimal number of bases for T is basically insensitive to the number
of images used in the training dataset. Finally, the proposed face
recognition system has shown to yield a better recognition perfor-
mance than those of existing still-image-based and image set-based
methods presented in the literature.

For the case of a single testing image, the KDT algorithm proposed
in this study is also applicable by considering the single image as a
point in high-dimensional space, and then projecting this point onto
corresponding kernel subspaces to measure its similarity. The com-
putational complexity of the KDT algorithm increases significantly
with an increasing number of training images. Therefore, future
studies will investigate the feasibility of using an ensemble learning
technique to reduce the number of training images required whilst
preserving the quality of the classification results. In addition, the use
of sequential learning methods such as incremental principal com-
ponent analysis [49] and incremental linear discriminant analysis [50]
will be considered as a means of improving the computational
efficiency of the KDT optimization algorithm.
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